Section 6.3: Exponential functions

1) let $f(x)=2^{x}$

1a) make a table of values and sketch a graph

x	$f(x)$	
2	$2^{2}=4$	$(2,4)$
1	$2^{1}=2$	$(1,2)$
0	$2^{0}=1$	$(0,1)$
-1	$2^{-1}=1 / 2$	$(-1,1 / 2)$
-2	$2^{-2}=1 / 4$	$(-2,1 / 4)$

1b) Find the domain of $f(x)$
The graph needs to be extended all the way to the left and right edge of the x-axis.
Answer: domain $(-\infty, \infty)$
1c) Find the range of $f(x)$
The graph is supposed to always be just slightly above the x-axis. So the bottom y for the range is 0 . I use a round bracket as the graph doesn't touch the x-axis. The graph goes up forever, so the end of the range is ∞

Answer: range ($0, \infty$)
1d) Find the horizontal asymptote
The x-axis is the horizontal asymptote
Answer: y = 0
3) let $f(x)=2^{x+3}$

3a) make a table of values and sketch a graph
Set the exponent equal to zero to get the (-3) for the middle of the x-column of the table.
$x+3=0$
$x=-3$

x	$f(x)$	
-5	$2^{-5+3}=2^{-2}==1 / 2^{2}=1 / 4$	$(-5,1 / 4)$
-4	$2^{-4+3}=2^{-1}=1 / 2$	$(-4,1 / 2)$
-3	$2^{-3+3}=2^{0}=1$	$(-3,1)$
-2	$2^{-2+3}=2$	$(-2,2)$
-1	$2^{-1+3}=2^{2}=4$	$(-1,4)$

$3 b$) Find the domain of $f(x)$
the graph needs to be extended all the way to the left and right edges of the x-axis.
Answer: domain $(-\infty, \infty)$
$3 c$) Find the range of $f(x)$
The graph is supposed to always be just slightly above the x-axis. So the bottom y for the range is 0 . I use a round bracket as the graph doesn't touch the x-axis. The graph goes up forever, so the end of the range is ∞

Answer: range ($0, \infty$)
3d) Find the horizontal asymptote

The x-axis is the horizontal asymptote
Answer: $\mathrm{y}=0$
5) $f(x-3)$

5a) To find $f(x-3)$ just change the exponent from x to $x-3$. You really don't need a parenthesis in your answer.

Answer \#5a: $f(x-3)=e^{x-3}$
change the sign of the number in the exponent, put that number in the middle of the x-column

5b) Since the minus three is in a parenthesis the graph will shift to the right.

Answer \#5b: shift right 3 units

5c) Create the graph by moving each point 3 to the right.
$f(x-3)$ is drawn in blue.

5d) Find the domain of $f(x)$
the graph needs to be extended all the way to the left and right edges of the x-axis.
Answer \#5d: domain ($-\infty, \infty$)
$5 e$) Find the range of $f(x)$
The graph is supposed to always be just slightly above the x-axis. So the bottom y for the range is 0 . I use a round bracket as the graph doesn't touch the x-axis. The graph goes up forever, so the end of the range is ∞

Answer \#5e: range ($0, \infty$)
5f) Find the horizontal asymptote

The x -axis is the horizontal asymptote

Answer \#5f: y = 0

7a) To find $f(x+2)$ just change the x in the exponent to $x+2$, no parenthesis is needed.
Answer \#7a: $f(x+2)=e^{x+2}$
7b) Describe the transformation from $f(x)=e^{x}$

The minus in a parenthesis will shift the graph left.

Answer \#7b: The graph is the same, but shifted 2 units to the left.
7c) Just move each point 2 to the left and duplicate the original graph.
$f(x+2)$ drawn in blue.

7d) Find the domain of $f(x)$
the graph needs to be extended all the way to the left and right edges of the x-axis.
Answer \#7d: domain $(-\infty, \infty)$
7e) Find the range of $f(x)$
The graph is supposed to always be just slightly above the x-axis. So the bottom y for the range is 0 . I use a round bracket as the graph doesn't touch the x-axis. The graph goes up forever, so the end of the range is ∞

Answer \#7e: range (0, ∞)
7f) Find the horizontal asymptote
The x-axis is the horizontal asymptote
Answer \#7f: y = 0
9) $f(x)+2$

9a) simply add 2 to the function. The 2 does not belong in the exponent as it is not in a parenthesis.
Answer \#9a: $f(x)+2=e^{x}+2$

9b) The plus 2 is not part of the function notation, so it moves the graph up 2.
Answer \#9b: shifts graph up 2 units.
9c) Just move each point of the original graph up two units and draw the same shape.
$f(x)+2$ is drawn in blue and the horizontal asymptote is drawn in purple.

9d) Find the domain of $f(x)$
the graph needs to be extended all the way to the left and right edges of the x-axis.

Answer \#9d: domain ($-\infty, \infty$)
$9 e)$ Find the range of $f(x)$

The graph is raised up 2. So the bottom y for the range is 2 . I use a round bracket as the graph doesn't touch the x-axis. The graph goes up forever, so the end of the range is ∞

Answer \#9e: range (2, ∞)
9f) Find the horizontal asymptote

The graph bottoms out at 2 on the y-axis

Answer \#9f: y = 2
11) $f(x)-3$

11a) simply subtract 3 after the e^{x}. The 3 does not belong in the exponent as it is not in a parenthesis.

Answer \#11a: $f(x)-3=e^{x}-3$

11b) The -3 moves the graph down.
Answer \#11b: shifts graph down 3 units.

11c) Just move each point down 3 units and draw the same shape.

Graph of $f(x)-3$ drawn in blue, horizontal asymptote drawn in purple.

11d) Find the domain of $f(x)$
the graph needs to be extended all the way to the left and right edges of the x-axis.

Answer \#11d: domain ($-\infty, \infty$)
11e) Find the range of $f(x)$
The graph moves down 3, so the range also moves down 3 . New range starts at $\mathrm{y}=-3$

Answer \#11e: range ($-3, \infty$)
11f) The horizontal asymptote moves down 3 as well.

Answer \#11f: y = -3
13) $f(-x)$

13a) since the negative is in a parenthesis, the negative x will go in the exponent.

Answer \#13a: $\mathrm{f}(-\mathrm{x})=\mathrm{e}^{-\mathrm{x}}$
13b) f(-x) reflects a graph over the y-axis.

Answer \#13b: Reflects over y-axis.

13c) Just move each point to the opposite side of the y-axis.
$\mathrm{f}(-\mathrm{x})$ drawn in blue.

13d) Find the domain of $f(x)$
the graph needs to be extended all the way to the left and right edges of the x-axis.
Answer \#13d: domain $(-\infty, \infty)$
13e) Find the range of $f(x)$
The graph is supposed to always be just slightly above the x -axis. So the bottom y for the range is 0 . I use a round bracket as the graph doesn't touch the x-axis. The graph goes up forever, so the end of the range is ∞

Answer \#13e: range (0, ∞)
13f) Find the horizontal asymptote
The horizontal asymptote will correspond with the range.
Answer \#13f: y=0

15a) To find $2 f(x)$ simply put a 2 in front of the original function.

Answer \#15a: $\mathbf{2 f}(\mathrm{x})=\mathbf{2} \mathrm{e}^{\mathrm{x}}$
15b) Each point on the new graph will have the same x as the original, but the y 's will be multiplied by 2, and be pulled away from the y-axis. We say that the points are stretched away from the y-axis.

Answer \#15b: new graph will be stretched.

15c) We need to do more than shift to create the graph of $2 f(x)$ as this is not a rigid transformation. The easiest way to create a graph is to just multiply each y in the original table by 2 to get the y-coordinate for the same value of x in the new function.

The first two columns in my table were the given columns. I multiplied each y coordinate by 2 to get the middle column. The last column are the points that I plotted to get the graph of $2 f(x)$

$15 d)$ Find the domain of $f(x)$
the graph needs to be extended all the way to the left and right edges of the x-axis.
Answer \#15d: domain ($-\infty, \infty$)
15e) Find the range of $f(x)$

The graph is supposed to always be just slightly above the x-axis. So the bottom y for the range is 0 . I use a round bracket as the graph doesn't touch the x-axis. The graph goes up forever, so the end of the range is ∞

Answer \#15e: range $(0, \infty)$
15f) Find the horizontal asymptote
The horizontal asymptote will correspond with the range.
Answer \#15f: y = 0
\#17-32 Let $g(x)=2^{x}$
a) Find the indicated function
b) Describe the transformation of the graph of as compared to the graph of $g(x)=2^{x}$.
17) $g(x+1)$

17a) Find the indicated function
The plus 1 goes in the exponent. It's okay if you put $(x+1)$ in a parenthesis, but the parenthesis are not necessary. (This shifts the graph left 1)

Answer \#17a: $g(x+1)=2^{x+1}$
17b) Describe the transformation of the graph of as compared to the graph of $g(x)=2^{x}$.

Answer \#17b: Shifts left 1

19) $g(x-1)$

19a) Find the indicated function

The minus 1 goes in the exponent. It's okay if you put ($x-1$) in a parenthesis, but the parenthesis are not necessary. (This shifts the graph right 1)

Answer \#19a: $g(x-1)=2^{x-1}$
19b) Describe the transformation of the graph of as compared to the graph of $g(x)=2^{x}$.

Answer \#19b: Shifts right 1

21) $g(x)+1$

21a) Find the indicated function
The plus 1 doesn't belong in the exponent as it is not in a parenthesis. It just goes after the function. (This shifts the graph up 1)

Answer \#21a: $g(x)+1=2^{x}+1$

21b) Describe the transformation of the graph of as compared to the graph of $g(x)=2^{x}$.
Answer \#21b: Shifts up 1
23) $g(x)-2$

23a) Find the indicated function
The minus 2 doesn't belong in the exponent as it is not in a parenthesis. It just goes after the function. (This shifts the graph down 2)

Answer \#23a: $\mathrm{g}(\mathrm{x})-2=\mathbf{2}^{\mathrm{x}}-2$

23b) Describe the transformation of the graph of as compared to the graph of $g(x)=2^{x}$.
Answer \#23b: shifts down 2
25) $-\mathrm{g}(\mathrm{x})$

25a) Find the indicated function
The negative sign will just go to the left of the 2 . It doesn't belong in the exponent as it is not in the parenthesis. (This reflects the graph over the \mathbf{x}-axis)

Answer \#25a: $-\mathrm{g}(\mathrm{x})=-\mathbf{2}^{\mathrm{x}}$

25b) Describe the transformation of the graph of as compared to the graph of $g(x)=2^{x}$.
Answer \#25b: reflects over x-axis
27) $g(x+1)-4$

27a) Find the indicated function
The plus 1 goes in the exponent. It's okay if you put ($\mathrm{x}+1$) in a parenthesis, but the parenthesis are not necessary. (This shifts the graph left 1)

The minus 4 doesn't belong in the exponent as it is not in a parenthesis. It just goes after the function. (This shifts the graph down 4)

Answer \#27a: $g(x+1)-4=2^{x+1}-4$

27b) Describe the transformation of the graph of as compared to the graph of $g(x)=2^{x}$.
Answer \#27b: Shifts left 1 and down 4
29) $g(x-2)+3$

29a) Find the indicated function

The minus 2 goes in the exponent. It's okay if you put ($x-2$) in a parenthesis, but the parenthesis are not necessary. (This shifts the graph right 2)

The plus 3 doesn't belong in the exponent as it is not in a parenthesis. It just goes after the function. (This shifts the graph up 3)

Answer \#29a: $g(x-2)+3=2^{x-2}+3$

29b) Describe the transformation of the graph of as compared to the graph of $g(x)=2^{x}$.
Answer \#29b: shifts right 2 and up 3
31) $-g(-x)+2$

31a) Find the indicated function

The negative sign in front of the $g(x)$ will just go to the left of the 2 . It doesn't belong in the exponent as it is not in the parenthesis. (This reflects over x-axis)

The negative sign inside the parenthesis will go in the exponent. (This reflects over \mathbf{y}-axis)
The plus 2 doesn't belong in the exponent as it is not in a parenthesis. It just goes after the function. (This shifts graph up 2)

Answer \#31a: $-\mathrm{g}(-\mathrm{x})+2=-2^{-x}+2$

31b) Describe the transformation of the graph of as compared to the graph of $g(x)=2^{x}$.
Answer \#31b: reflects over x-axis, reflects over y-axis, shifts up 2
33) $3^{x+2}=27$
$3^{x+2}=3^{3}$
$x+2=3$
Answer \#33: x = 1
35) $4^{-x}=64$
$4^{-x}=4^{3}$
$-x=3$
Answer \#35: $x=-3$
37) $\left(\frac{1}{2}\right)^{x+3}=\frac{1}{32}$
$\left(2^{-1}\right)^{x+3}=2^{-5}$
Clear the parenthesis on the left side by multiplying the exponents.
$-1^{*} x$ and $-1^{*} 3$
$2^{-1 x-3}=2^{-5}$
$-1 x-3=-5$
$+3+3$
$-1 x=-2$
$x=2$
Answer \#37: x = 2
39) $\left(\frac{1}{2}\right)^{2 x+1}=16$
$\left(2^{-1}\right)^{2 x+1}=2^{4}$
Multiply exponents to clear parenthesis
$-1 * 2 x$ and $-1 * 1$
$2^{-2 x-1}=2^{4}$
$-2 x-1=4$
$+1+1$
$-2 x=5$
$x=-5 / 2$
Answer \#39: $x=-5 / 2$
41) $5^{x+2}=25^{3 x-4}$
$5^{x+2}=\left(5^{2}\right)^{3 x-4}$
$5^{x+2}=5^{6 x-8}$
$x+2=6 x-8$
$-x+8-x+8$
$10=5 x$

Answer \#41: $\mathbf{x}=\mathbf{2}$
43) $3^{x-4}=9^{3-x}$
$3^{x-4}=\left(3^{2}\right)^{3-x}$
$3^{x-4}=3^{6-2 x}$
$x-4=6-2 x$
$-x-6-6-x$
$-10=-3 x$
$-10 /-3=x$
Answer \#43: x=10/3
45) $e^{x-4}=e^{2 x-3}$
$x-4=2 x-3$
$\underline{-x+3 \quad-x+3}$
$-1=x$
Answer \#45: x=-1
47) $e^{3 x} * e^{2}=e^{-4}$

Add exponents to simplify left side.
$e^{3 x+2}=e^{-4}$
$3 x+2=-4$
$\frac{-2-2}{3 x=-6}$

Answer \#47: x=-2
49) $2^{x-4} * 2^{3}=2^{5}$

Add exponents to simplify left side.
$2^{x-4+3}=2^{5}$
$2^{x-1}=2^{5}$
$x-1=5$
Answer \#49: x=6

